NORMAL AND ABNORMAL etCO₂/CAPNOGRAPH WAVEFORMS

Normal Capnogram

The normal capnogram is a waveform which represents the varying CO_2 level throughout the breath cycle.

Waveform Characteristics:

A-B: Baseline D: End-Tidal Concentration

B-C: Expiratory Upstroke **D-E:** Inspiration

C-D: Expiratory Plateau

Rebreathing CO₂

Other Possible Causes:

- · Faulty expiratory valve
- Inadequate inspiratory flow
- · Partial rebreathing
- Insufficient expiratory time

Bronchospasm/Asthma

Other Possible Causes:

- Bronchospasm/COPD
- Obstruction in the expiratory limb of the breathing circuit
- Presence of a foreign body in the upper airway
- Partially kinked or occluded artificial airway

Curare Cleft

Other Possible Causes:

- · Patient is mechanically ventilated
- Depth of cleft is inversely proportional to degree of muscle relaxants

*Increasing etCO₂ (Hypoventilation)

Other Possible Causes:

- · Decrease in respiratory rate
- · Decrease in tidal volume
- Increase in metabolic rate
- Rapid rise in body temperature (malignant hyperthermia)

Cardiac Arrest

Other Possible Causes:

- Decreased or absent cardiac output
- Decreased or absent pulmonary blood flow
- Sudden decrease in CO₂ values

*Decreasing etCO₂ (Hyperventilation)

Other Possible Causes:

- Increase in respiratory rate
- · Increase in tidal volume
- · Metabolic acidosis
- Fall in body temperature

Return of Spontaneous Circulation

Other Possible Causes:

- · Increase in cardiac output
- Increase in pulmonary blood flow
- Gradual increase in CO₂ production

^{*}Assumes adequate circulation and alveolar gas exchange